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identification of Cubic Stiffness Nonlinearity by Linearity
-Conserved NARMAX Modeling

Han-Kee Jang* and Kwang-Joon Kim*
(Received March 18, 1994)

A modeling technique to estimate a NARMAX model is developed to identify nonlinearities
which are contained in linear-based nonlinear systems. Considering great contributions by

linear parts of the NARMAX model on describing nonlinearities, a linear model, which is

estimated from small amplitude input and the corresponding output is taken as the linear part
of the NARMAX model. Hence, the capabilities of the model to predict nonlinear be­
haviors for any input within stable region are fairly improved, and multiplicity problem in

selecting a nonlinear regression model is also resolved. As an illustration, one degree offre<:dom

system with cubic stiffness is identified in terms of NARMAX modeling technique using the

procedure proposed in this work and conventional one, respectively. By extraction higher order

FRFs from the NARMAX models, dominant nonlinearities of the system are predicted, and the
results by the two methods are compared with analytic one, which shows the priority of the
modeling technique proposed.

Key Words: NARMAX(Nonlinear Auto-Regressive Moving Average with eXogenous input)

Model, Multiplicity, Two Step Modeling, Linear Property, Generalized FRF
(Frequency Response Function)
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Time series modeling has been applied in many

fields mainly for two purposes. One is for control

of a system, in which case the prime object is to
predict the system output accurately by minimiz­

ing the residuals. The other is for identification of

a system, in which case the object is to give good
descriptions of the physical properties of the

system. Recently nonlinear systems as well as
linear systems have been tackled by this technique
intensively in such a way that both of the two

purposes can be satisfied(Billings and Tsang,
1989a, b). Most of the literatures so far published,

however, are oriented to the system control rather

than system identification.

1. Introduction

: input sequence
: output sequence

ith term in NARMAX model

: ith N ARM AX model parameter
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Nomenclature ---------

: Estimated value

: Akaike's information criterion

: Error reduction ratio of the i-th

model term

: Frequency response function

"', In) : nth order frequency response
function

N : Number of data in the processing

NARMAX : Nonlinear Auto-Regressive Mov­
ing Averge with eXogenous input

: Residual Sequence
: i th frequency component in

generalized frequency response

function
: degree of nonlinearity
: order of output, input and resid­

ual sequence
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Fig. I Illustration of multiplicity in selecting non­
linear regression models

2. Multiplicity of Nonlinear Regres­
sion Models

(a) Line fitting by linear regression models
(b) Curve fitting by nonlinear regression

models

ing for small amplitude input by a linear

ARMAX model and nonlinear modeling for a
large amplitude input based on the results

obtained at the linear modeling. The method is
applied to a single dol' system with a hardening

stifTness to show its feasibilities, where nonlinear­

ities of the system are analyzed in terms of gener­

alized FRFs.
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Unqueness of a regression model III linear
system theory is well defined(Soderstrom and

Stoica, 1989). By taking an unbiased estimator

among several ones available and choosing an
adequate model order, the model can be easily

estimated so as to satisfy the whiteness of the

residuals and the uniqueness. As a linear regres­
sion model is composed of specified variables

only such as y(t), u(t) and e(t), it is easy to

build the adequate model. From figure I, which

conceptually illustrate linear regressions of linear
relation between the input ancl output and non­

linear regressions of nonlinear one, respectively, it

is easy to judge, in the viewpoint of minimizing

errors, that the linear model I in Fig. I(a) is better

than the model II. The modd I, moreover, is

necessarily expected to represent well the system
characteristics such as system poles and residues.

In case of a nonlinear regression of unknown

nonlinear relation between the input and output,

it's quite an another story because of the multi-

Wide class of nonlinearities in mechanical sys­
Items are assumed to exist as restoring forces, they

are often expressed as polynomial expansions of a

displacement and/or a velocity of a concentrated

mass. Mechanical elements such as a rubber
spring, a disk spring, a vlolute spring, etc. and an

assembled unit of a loudspeaker are good
examples(Wall, 1963; Kaizer, 1987). The system

with these kinds of elements behaves like a linear

~:ystem for small amplitude inputs. Increasing the

amplitude, nonlinearities such as harmonics and
gain variations appear. Polynomial NARMAX

rnodeling(Billings and Tsang, 1989a; Chen and

Billings, 1989a) may be a strong tool to identify

these types of nonlinear system~ because of their

similarity in polynomial exp;.nsions. The NAR­

MAX modeling is recently accepted as one of the

most practical technique for nonlinearity identifi­

cations because the experimental setup and proce­
dure required are not different from the linear

case. Furthermore, once an adequate model is

fitted, sufficient nonlinearity information can be
extracted from the model. As one could expect,

however, there are several obstacles to resolve

before getting an adequate model, which are

determination of model order, nonlinearity order,

model structure, etc.

Nonlinear relationship between the input and
the output sequence gives much richer possibil­

ities to describe systems, each of them has its own
characteristics respectively. Therefore, it becomes

necessary to select the model which best fits the

aim of an analysist. In this work the aim of the
time series modeling is to identify nonlinear sys­
te:m dynamics such as harmonics, inter­

modulation, gain variation, etc. To achieve the

pupose, a NARMAX modeling technique is

proposed, which conserve the linear properties of

the system in the nonlinear time series model. At
first, a multiplicity problem in nonlinear regres­

sions of nonlinear relations between the input and
output is discussed, and the effects of the linear
system properities on descriptions of its nonlinear

bt:haviors are clarified. A nonlinear ARMAX

modeling technique based on the linear terms is
suggested in section 3. In the method, the model­

ing is made by two steps, which are linear model-
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Consider a nonlinear system which is expressed

by the following equation:

3. NARMAX Modeling Based on Lin­
ear Characteristics

where m, c and k are mass and linear damping
and spring coefficient respectively and the g is

some polynomial function of y and y. The sys­
tem behaves like a linear system for sufficiently
small amplitude of y( or u) because the contribu­
tions by the function g is negligible compared
with those by the linear terms. When the input
amplitude increases to some extent, the ampli­

tudes of the output y and y also increase and the
contributions by the function g became not negli­
gible. Wide class of mechanical systems under
practical uses follow the above relationship,
which may be classified as a linear-based non­

linear system. As the degree of nonlinearity of
Fig. 2 Schemetic relation between generalized FRFs

and NARMAX model terms

them are generally assumed to be weak, the linear

characteristics are still predominant even in non­
linear responses.

Gifford(l993) derived the nonlinear FRFs, as a

special case, for a cubic stiffness nonlinear system

as Eq. (2) by applying the concept of Volterra
series(Rugh, 1981; Gifford and Tomlinson,

1989), which are listed in Eq. (3).

my+cy+ky+k'ys=u (2)

HI (jOh) = k-m~T+jcah

H s (jOh, jOJ2, jws) = ~ ~ . HI(jWI)· HI(jW2)

•HI (jws)

• HI(jwI + jW2+ jws) (3)

There does not exist an FRF of even order. It is

because that the system (2) has no variables of

even order and the response for the system is

symmetrical. As shown in Eq. (3), we can see that
the nonlinear FRF of order 3 is expressed by

multiplications of the linear FRF only, which

clearly shows that accurate descriptions of non­

linear behaviors are desperately dependent upon
whether the linear FRF is properly derived or

not.
As an another way of deriving the higher order

FRFs, there is a probing method(Bedrosian and
Rice, 1971). As shown in Fig. 2, which illustrates

a schematic relation between the NARMAX

model terms and the generalized FRFs, the 1st
order FR F is described completely by the linear

terms only and the nth order FRF by all of terms
up to the order n. The coefficients of linear

auto-regressive part are always used as a denomi­
nator of the FRFs regardless of the order. From

the generalized FRFs, various nonlinearities can
be described for the inputs of specified amplitude

(I)my + cy +ky+ g( y, y)=u

plicity in selecting a model. Two nolinear models
are suggested in Fig. 1(b) in order to fit the target

curve(dashed line), respectively. As the nonlinear
model, in general, has amplitude-dependent char­

acteristics, the input range was specified as A or
B in the figure. Let's assume that the residual sum

of squares by the two models are the same and

both two models are unbiased. In this case, it is

not clear that which is the better, and therfore, the
judgement is wholly up to an analyst. As far as
only the statistics are concerned, either of two

models I' and II' will be satisfactory. If we give

weights on the lower half range of the input
(range A), the model II' will be preferred.

To select a model among multiple ones, it is
necessary first to define the intended use of the

model before determining the way how to model

the system(Soderstrom and Stoica, 1989). The
final purpose of the modeling in this paper is to

predict various nonlinear behaviors of the system

for any input within stable region in the fre­
quency domain as well as in the amplitude

domain. The concrete procedure to estimate the

model which fits the aim is presented in the

following section.
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Table 1 Approximate equations for estimating various nonlinear responses for given inputs

Input Output

~2nd harmonic: IEzl ~ 2 IHz(f, 01

armonics u(t) = Acos(2Jrft) 3rd harmonic: lEal ~ 1~la zIHa(f; f, 01

m-th harmonic: IEml ~l1-m-lIHm(f, .••• 01

y(t) = IN(A, oIcos(2Jrft+ L N(A, 0)
ain Variation u(t) = Acos(2Jrft)

IN(A, 01 ~A.IHI(f)I.] I +~IAlz_!:Ia(f, =f, 0 14 HI(f)

termodulation
u(t) = Acos(2 Jrft) Mag(f+g)=IA.B.Hz(f, g)1

+ Bcos(2Jrgt) Mag(f-g)=IA.B.Hz(f, -g)l, (f>g)

H

In

G

and frequency, some of which are listed in Table
I(Billings and Tsang, 1989b). This also shows

how important the determination of the linear
part of an NARMAX model is.

Bel;ause of the relation between the NARMAX
modd and the higher order FRFs, although

addition of one nonlinear term in the NARMAX
modding may cause little contribution to the

reduction of the prediction errors, it may bring
about the change of most of the model parameters

and consequently all the FRFs of the order from
I to n. Therefore, it is necessary to establish a
modeling strategy in which the physical prop­

erties of the system are less sensitive to the non­

linear model parameters. In this paper, a NAR­

MAX model is obtained for the systems expressed
as Eq. (I) by putting an emphasis on the

dynamics of the system in the linear range(Jang,
1994). The modeling is made by two steps. The
first 5.tep is the linear modeling for the low level

input and the corresponding output, and the
second step is nonlinear modeling for large ampli­

tude input and the output. The concrete proce­
dure is stated in the following section.

3.1 Determination of linear model in the
linear range

For a set of stationary input and ouput
sequence of a nonlinear time-invariant system, if
they are bounded to some level, it is possible to
estimate a NARMAX model which satisfy a

stationarity condition within the specified region

and does not diverge out(Chen and Billings,

1989b). This model is, at least, expected to be
Valid for the input and output, of which ampli­

tudes are less than those used at nonlinear model­

ing. In this case, each term of the NARMAX
model has specified significance to the system

response. When the input amplitude decreases to
small one so as to neglect the nonlinearities,
contribution of the nonlinear terms to the system

responses approaches zero first because their high

sensitivity to amplitude. It is natural, therefore,
that the linear part of the model is responsible for
the linear characteristics like the case of the sys­

tem expressed by Eq. (I).
Considering the great contribution of system

dynamics as discussed previously, the linear
modeling is executed first to obtain the linear

model and the corresponding linear characteris­
tics. A small amplitude input and the correspond­
ing output are used in this modding so as to

neglect the nonlinearity of the system. An ade­
quate order or maximum time lag is determined
by Ale. The model parameters arc estimated by
using the generalized least squares algorithm,
which determines the error model
simultaneously(Sinha and Kuszta, 1983; Koren­
berg et aI., 1986).

The linear model structure estimated will be
used as the linear part of a nonlinear model.
Extending the model order obtained from the

linear modeling to nonlinear modeling is natural
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h=h(p, q, r, ni' nj, nk)

Eq. (5) can be rewritten as

• of
linear terms

y(t)= ~ BL,haL,h(t) +
h~O

• of
nonlinear terms

~ BN.haN.h(t)+e(t) (7)
h=O

• of
nonlinear terms

z(t) = ~ BN.haN.h(t) +e(t) (9)
h=O

sible for regressions by nolinear variables only.

As a solution to conserve the linear characteris­
tics in the NARMAX model, linear model coeffi­

cients BL.h'S are fixed by those estimated at the

linear modeling of the first step. The output
responses are filtered by the linear model coeffi­

cients as Eq. (8), then a residual sequence z( t)
are regressed again with nonlinear variables only

as Eq. (9) including an error model.

The orthogonalization algorithm is used to avoid

a computational burden, and the judgement that

which term should be included into the model is

made by using an error reduction

ratio( Korengerg and et aI., 1986). As a final step,

the estimated nonlinear model is validated by the
correlation test(Billings and Voon, 1986).

The above procedure gives constraints to the

estimation of nonlinear coefficients as well as

linear ones, and therefore, the model set may

deviate from a global minimum point regardless

that the model satisfies the condition of unbias­

ness. But the choice of model should be done so
as to fit the intended use. In this paper the object

of the model is to identify the nonlinear system, in

other words, to describe accurately various non­
linear behaviors within the applicable input

range.

When applying this technique, in which the
linear model estimated from the linear range is

used as the linear part of the nonlinear model, it

should be preceded to judge whether the linear
model represent well the linear characteristics or

not. In order to obtain the linear model, small
amplitude input must be selected so as to guaran­
tee that the nonlinearities are negligible and the
system behaves linearly around at the input

amplitude. It is easily confirmed through the
re-estimation of the system model for another
input, of which amplitude is slightly different

from that of the input. If the change of the :nodel
coefficients is negligible or falls within their confi­

dence interval, it will be concluded that the linear

(6)for h?:.1

ao(t}= I

nio nj, nk: nonlinearity order of y, u and

e
~(ni+nj+nk)=l, "', n

i,i,k

where

because the model order for the mechanical sys­

tem is not affected by input level but by the degree
of freedoms of the system or the maximum deriva­

tive order about the concentrated mass. Some
examples show that the NARMAX model with

maximum time lag 2 can represent well the system

of single degree of freedom(Seidel and Davies,
1988; Tsang and Billings, 1992).

3.2 Regression of filtered responses using
nonlinear variables

The NARMAX model of Eq. (4) can be re­

written as a linear form in the parameter model

such as Eq. (5) :

y(t}=Fn{y(t~ l), "', y(t~p),

u(t-d), "', u(t-d-q),
e(t-l), "', e(t~r)}+e(t} (4)
# of model terms

y(t}= ~ Bhah(t)+ e(t} (5)
h~O

where y, u, e mean the measured output, input
and the prediction error, respectively and p, q, r

the corresponding orders, and F n is some
polynomial-type nonlinear function of maximum

degree n. The a's mean multiplications of the y,

u and e, respectively as Eq. (6), and B's the
corresponding coefficients:

where subscripts Land N mean the linear and
the nonlinear part of the NARMAX model re­
specitively. The first summation of the right side

of Eq. (7) takes the form of a conventional

ARMAX model and the second part is respon-
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(±2.20X 10-5)

(±2.19x 10-5)

0- 4 / ± 9.87 x 10-8 )

0-3( ±9.87 x 10-8 )

0-4 (± 1.06 x 10-7)

odlicientOrder Variable C
i a,

-_._--
I Y'-l 1.76386

f----

2 Yt-2 -0.90437

3 Ut 4.03445 x I

4 U t - I 1.56232 x I

5 Ut-2 3.83722 x I
---

Table 2 Linear model for a small amplitude input

(0,nput=0.264 N, Ooutput=0.00855 m)

4. Simulation on Identifications of
Hardening Stiffness Model

model represent the linear dynamics of the system
well. In the circumstances that nonlin~ar effects

can not be excluded even for a low level input, it

may be dangerous to take a linear model as the

linear part of an NARMAK model, and another
method to conserve the linear characteristics of

the system in the time series model is
required(Jang, 1994; lang and Kim, 1994).

Table 3A single degree of freedom system with cubic

stiffness as Eq. (2) is ;:;onsidered for an illustra­

tion" where m, c, k and k' are given by I kg, 2 N.
slm, 60 N/m and 60 N/m3 respectively. The natu­

ral frequency of the system is 1.233 Hz when the

effect of the nonlinear term is neglected. The
system was excited by a band-passed(0~2 Hz)

uniformly distributed random signal with zero

mean. To take an advantage of easy control­

lability of a maximum amplitude for a nonlinear

system which has amplitude-dependent character­

istics, a uniformly distributed random input was

used here rather a Gaussian random

input(Billings and Voon, 1984). Two levels of
inputs with root mean square (rms) values of O.

254 Nand 146 N were used. The corresponding

rms levels of the outputs are 0.0086 m and 1.1 m,

respectively. In consideration of the effects by the
harmonics and inter-modulations, the sampling

interval was chosen as 50(msec) so that Nyquist

cut-ol'f frequency is 10 Hz. The time series model

was constructed from 900 data points of input and
output.

4.1 Determination of NARMAX model
The nonlinear system was modeled first for the

small amplitude input, and the results are listed in

Table 2. An adequate order of the model was 2
and it will be used at the following procedure. To
check the capability of the model to represent the
linear dynamic properties, modal parameters were

calculated from the model and the results are
listed in Table 3 with the analytic ones which was
obtained by neglecting the effect of the term k'y3,

which shows quite coincidence. This means that

the nonlinear effects at this input amplitude can

Comparisons of linear characterisitcs by
the NAR\1AX model estimated by the

proposed method with the: analytic ones

Analyt]S'cNARMAX model by
value proposed method

----------4----
_N._a_tu_r_a_l_fr_eq_U_e_nC_y_+---I_.2_33_~. 1.233 Hz

Damping ratio 0.219~ 0.219
----

Table 4 Consistency of model parameters around at

the selected input level

Coeflkient
Order Variable fA

I a,
0,nput=0.132 N 0,nput=0.396 N

I I Yt-l 1.76387 1.76387
-'

2 i Yt-2 -0.904837 --0.904837
---1- '--

ftu:" 4.03443 x 10-4 4.03+*810-4

1.5623210-3 1.5623210-3

,...-
_ 5 Ut-Z 3.83720 I0-4 3.8372410-4

be neglected. Table 4 displays two models which

are estimated at different input amplitudes, respec­

tively. The first input level was a half of the
selected input level by rms magnitude, and the
other is selected as one and a half of it. Though

there exist small changes in the parameters as the
change of input amplitude, the differences fell
within the 95% confidence interval of the parame­

ter as listed in Table 2. This shows that the system
behaves linearly around at the selected input

amplitude.
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time step

-2

-3o':----::5~0----:-100L----:-15~0--~200

200ISO100

time step

50

(a) Proposed method

2

~

~
~

1
-2

-3
0

~

I
} -I

"

(b) Conventional method

Fig. 3 Predictions of nonlinear responses using
NARMAX models estimated by two different
modeling techniques respectively

Order
NARMAX model by NARMAX model by
the presented method the conventional method

Variable Coefficient Variable Coefficient
i

at 8I ill 8I

I Yk-l 1.7639 Yk-l 1.7336
2 Yk-2 -0.9048 Yk-2 -0.8933

3 Uk 4.034 X 10-' Uk 4.133 X 10-'

4 Uk- 1 1.562 X 10-3 Uk- 1 1.465 X 10-3

5 Uk-2 3.837 X 10-' Uk-2 4.164 X 10-'

6 Y~-l -0.1998 Y~-l -1.1690
7 Y~-2 0.0215 Y~-2 0.0121
8 Y~-lYk-2 0.2089 yLIYk-2 0.1395
9 Yk-1Y~-2 -0.1564 Yk-lY~-2 -0.1052

I ek- 1 0.00328 ek-l 0.0138
I ek-2 -0.00238

fff. 0.58% 0.45%
2Y

Table 5 Two nonlinear models for a simulation

model estimated by two different methods
for a large amplitude input

(atoput = 146 N, aoutput = 1.100 m)

A nonlinear modeling for the high level by

using the proposed method is followed. Non­
linear model terms of Eq. (6) with the maximum

time lag 2, which had been determined at the
previous stage, were considered in the order of

error reduction ratio(ERR). Only the order of

nonlinearity was increased until there exists no

meaningful term and the model satisfy the unbias­
ness condition.

Two nonlinear models are presented in Table
5, the first one was constructed by the presented

method and the second by the conventional
method(Billings and Tsang, 1989a) with the
thresholds of 0.01 % for ERR and the 99.9% for
sum of ERRs. Both two models were composed of
with the same number of model terms and model

variables, and predict the responses well for the
high level input as shown in Fig. 3. In Fig. 4 are

shown the correlation tests for the two models,
which disply the unbiasness. The residual sum of
squareds by the conventional method is smaller

than that by the presented method, which are

listed in Table 5. As far as only the statistics are

concerned, the model by the conventional method

seems the better.
4.2 Analysis of nonlinear behaviors in fre­

quency domain
The generalized FRFs of order I and 3(HI and

H3) extracted from the two kinds of NARMAX
models are illustrated in Fig. 5 and 6 with the

analytic results of Eq. (3), where H 3 is displayed

by contour plots for !J= It- Second order FRF
does not exist because there are no terms of

polynomial order 2. In each figure, three kinds of
FRFs are illustrated. The second and third one in

Fig. 5 were obtained from the two sets of NAR­
MAX models which are estimated by the present­
ed method and by the conventional
method(Billings and Tsang, 1989a) respectively.

HI by the presented method shows a typical

shape of an FRF for a single dof mechanical
system. The peak frequency corresponding to the
resonance was 1.233 Hz and the damping ratio
was 0.129, which are the same with the analytic

one. Therefore, it can be confirmed that the linear

properties of the system are kept in the linear part
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-1.0
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la) Estimated by proposed method (b) Estimated by conventional method

Fig. 4 Correlations validating NARMAX models(- - - : 95% confidence interval)

frequency (liz)

Fig. 5 Comparison of first order generalized FRFs
by two different methods with analytic one

of the NARMAX model. But, the FRF by the

conventional method shows slight differences in
natural frequency and damping ratio within 10%

respectively, which are 1.3l Hz and 0.135. These

are causled by the modeling procedure where the
errors are distributed into the whole range of
amplitude. In the viewpoint of minimizing the

errors, it is not necessary that the linear properties
by the estimated nonlinear model should be the
same with those by the linearized model. As the
linear characteristics do important role in describ­

ing nonlinear dynamics as stated previously, the
model by the presented method is believed to
describe even nonlinear behaviors more accurate­
ly.

R, by the presented method in Fig. 6, which

BOxlO+)

i 60

...,.. 40

~
if
::ll

0
0.0

0

I -50

::::

~ -100

Y
if -150

0.0

- analytic
proposed method

- conventional method

0.5 1.0 1.5 2.0 2.5 3.0

n-equency (liz)

~
0.5 1.0 1.5 2.0 2.5 3.0
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input amplitude (N)

(a) At a fixed frequency of 0.5 Hz

3Ox1O·3

i 20

.~
<:l 10

0
0.1 10 20

- analytic
...... proposed method

~ conventional method

30 40 50

(a) (b) (c)

(a) Analytic FRF
(b) Derived from the model estimated by the

proposed method
(c) Derived from the model estimated by the

conventional method

Fig.6 Comparision of third order generalized FRFs
by two different methods with analytic one

shows almost same results with the analytic FRF,

displays two peaks at (1.23, 1.23, 1.23) Hz and at
(1.23, - 1.23, 1.23) Hz, which mean third har­

monics and gain variations at those frequencies

respectively. Large magnitudes in the Ha mean
distinct nonlinearities at the corresponding fre­

quencies. Magnitudes of Ha along the lines A(fto

fl, fl) and H(fto - fl, fl) in the contour plot
represent the 3rd harmonics (fo=3fl) and the
gain variation (fo = fl) respectively(Billings and

Tsang, 1989b). Though Ha by the conventional
method shows similar shapes with the analytic
one, the peak frequency and the magnitude were

slightly different.
From now on, in order to confirm the capabil­

iti..:s of the proposed procedure in nonlinearity

identification, specific nonlinearities such as gain

variations and higher harmonics calculated by the
two NARMAX models will be compared with

the analytic ones. In Fig. 7 are shown the gain
variations by the NARMAX models and by the
analytic results at fixed frequencies of 0.5 Hz and

I Hz with the increase of the input amplitude. The
results using the FRFs from the NARMAX
model by the presented method and the analytical
ones show coincident decreases in the gain with
the increase of the input, which shows the harden­

ing characteristics of the system. But the model by

the conventional method yields somewhat differ-

4Ox1O'3

i
.~ 20
<:l

0
0.1 10 15

input amplitude (N)

(b) At a fixed frequency of I Hz

Fig. 7 Comparison of gain variations at a fixed
frequency by two different methods with
analytic ones

ent results ill their quantities.
The fundamental components and the third

harmonics, obtained by changing the excitation

frequency from 0.1 Hz to 2 Hz at fixed amplitude

of 50 N, are shown in Fig, 8. The dash-dot lines

display the fundamental and third harmonic com­

ponents by using HI and Ha obtained from the
N ARMAX model by the presented method, and

the solid lines direct calculations by the analytic

FRFs. Two kinds of lines display large magni­

tude at peak frequency of HI and at one third of

that, respectively, which are well known charac­

teristics of a Duffing's osciliator(Nayfeh and
Mook, 1979). Although there exist some discrep­

ancies between the two kinds of results, the

maximum difference is about 10%. But the results
by the conventional method, illustrated by dotted
lines, show distinct differences in the peak fre­

quency and magnitude, General trends for two
kinds of nonlinear behaviors, however, by the two

techniques are quite similar. That is, the 3rd
harmonics around at the peak frequency of HI
and at one third of the frequency are dominant,
and so do the gain virations along the line(f, ~ f,
f)·
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degree of freedom of the system, i.e. maximum

time lags of the model, as well as linear model
structure are obtained. At the second step, since

the linear model ;s taken as the linear part of the

NARMAX model, the NARMAX model is esti­
mated by formulating and selecting only the

nonlinear terms for high level input.

As an illustration, two NARMAX models were

estimated by the method proposed in this paper
and by the conventional method, respectively, for

a single degree of freedom system with hardening

stiffness, and their capabilities to describe the

several nonlinearities are compareJ with the ana­

lytic ones. Judging from the results, it is shown

that the model by the proposed method yields

more accurate descriptions of the nonlinear
behaviors of the system.
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A procedure of estimating an NARMAX

model is presented. which enables the better
descriptions of nonlinearities in the frequency
domain and in the amplitude domain. To resolve

the problem of multiplicity of NARMAX models

when using the least squares estimators, in the
paper. the most adequate model was selected so
that the linear characteristics of the system be kept

in the nonlinear model. The model is estimated by

two steps. At the first step, a linear ARMAX

model is derived for low level input, where the

5. Conclusions

The wnclusions from the investigations of

dominant nonlinearities of the system under iden­

tification by two differ::nt modeling techniques
are as follows. In the viewpoint of the minimizing

the residuals, the model by the conventional

method is the better. However, the model by the
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linear characteris, describes several nonlinear

behaviors more accurately than that by the con­

ventional method.
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